Quantitative Muscle Analysis in FSHD using Whole-Body MRI: Composite Muscle Measurements for Cross-Sectional Analysis

Per Widholm1, Markus Karlsson1, André Ahlgren1, Olof Dahlqvist-Leinhard1, Rabi Tawil2, Kathryn Wagner3, Jeffrey Statland4, Leo Wang5, Perry Shieh6, Baziel Van Engelen7, Diego Cadavid8, Lucienne Ronco8, Adefowope Odueyungbo8, Jay Han9, Maya Hatch9, Michelle L. Mellion8

1AMRA Medical AB 2University of Rochester 3Kennedy Krieger Institute, JHU 4University of Kansas, 5University of Washington, 6UCLA, 7Radboud University 8FulcrumTherapeutics, 9University of California Irvine
Michelle Mellion, M.D.

- Sr. Medical Director, FSHD – Fulcrum Therapeutics
- Board Certified Neurologist with subspecialty training in Neuromuscular Disease

- I am not presenting any data related to ReDUX4 and cannot take any questions related to the recently concluded randomized controlled ReDUX4 clinical trial.
Whole-Body MSK MRI Evaluation of FSHD Disease Heterogeneity and Progression

- WB-MSK-MRI Captures
 - Wholistic evaluation of skeletal musculature
 - Small quantitative changes in muscle health that correlate with functional measures
- Disease Heterogeneity
- Non-invasive
- Minimal burden on patient participation
- Changes in MSK MRI may be detected earlier than changes in clinical outcome assessments (COAs)
Objective

• Develop a whole-body MR imaging protocol and analysis algorithms to volumetrically measure fat replacement of skeletal muscle in FSHD feasible to use in multi-site clinical trials

• Generate a regional composite measurement that can correlate with clinical outcome measures
New Paradigm of Image analysis in NMD

- Imaging a slice(s) of select muscles in lower limbs
- Imaging of whole muscle, proximal to distal, in the whole body
- Personalized set of muscles to follow over time
Study Design

- Two Visits 4-12 weeks apart
- Assessments included
 - WB-MSK-MRI
 - Muscle Biopsy
 - Results presented in Ronco, et al. A Biomarker of DUX4 Activity to Evaluate Losmapimod Treatment Effect in FSHD Phase 2 Trials. At 2020 Virtual MDA Clinical and Scientific Congress.
- Clinical Outcome Assessments
 - TUG
 - FSHD TUG
 - Reachable Work Space
Main Inclusion Criteria

▪ Age 18-65 years old
▪ Confirmed diagnosis of FSHD1 with 1-7 repeats
▪ CSS 2 to 4 on Ricci’s scale (range 0-5)
▪ Presence of STIR positive signal in at least one leg muscle eligible for muscle biopsy
Subject Demographics (N=17)

<table>
<thead>
<tr>
<th>Variable</th>
<th>Mean(SD); range</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>49.4 (13.02); 23-65</td>
</tr>
<tr>
<td>Gender (Female) %</td>
<td>29.4%</td>
</tr>
<tr>
<td>Clinical Severity Score (CSS)</td>
<td>3.0 (0.71); 2-4</td>
</tr>
<tr>
<td>Average Repeats</td>
<td>5.2 (1.46); 3-7</td>
</tr>
</tbody>
</table>
Imaging Protocol for Whole Body MRI

Total examination time ~30 min
Skeletal Muscle MRI

Muscles Studied- 18 muscles bilaterally; 36

<table>
<thead>
<tr>
<th>Neck</th>
<th>Torso</th>
</tr>
</thead>
<tbody>
<tr>
<td>Supraspinatus</td>
<td>Pectoralis Major</td>
</tr>
<tr>
<td>Infraspinatus</td>
<td>Rhomboideus</td>
</tr>
<tr>
<td>Subscapularis</td>
<td>Latissimus Dorsi & Teres Major</td>
</tr>
<tr>
<td>Teres Minor</td>
<td>Trapezius</td>
</tr>
<tr>
<td></td>
<td>Serratus Anterior</td>
</tr>
<tr>
<td></td>
<td>Paraspinal (C3-Sacrum)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Legs</th>
<th>Arm</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadriceps</td>
<td>Deltoid</td>
</tr>
<tr>
<td>Hamstrings</td>
<td>Biceps Brachii</td>
</tr>
<tr>
<td>Adductors</td>
<td>Triceps Brachii</td>
</tr>
<tr>
<td>Tibialis Anterior</td>
<td></td>
</tr>
<tr>
<td>Gastrocnemius Medialis</td>
<td></td>
</tr>
</tbody>
</table>
Image Analysis

Calibration and merge

Muscle segmentation and QC

Measurement algorithms
Quantitative Muscle Measurement

- **LEAN MUSCLE VOLUME (cL)**
 - A measurement of the amount of lean/contractile muscle tissue

- **MUSCLE FAT INFILTRATION (%)**
 - A measurement of the diffuse fatty infiltration in the leaner/functioning parts of the muscle definition.

- **MUSCLE FAT FRACTION (%)**
 - A measurement of the overall fattiness of the muscle. Used to identify affected muscles or follow a muscle-to-fat replacement progress in muscle dystrophy.
Muscles Analyzed

- 478 out of 612 muscles analyzed
- 134 not analyzable
 - 64 Image Artifacts
 - Technical issues; e.g. streak artifact
 - 70 due to complete fat replacement
WB-MSK-MRI Captures Disease Heterogeneity

RICCI 2.5

1. Muscles clearly affected by disease, but not so severely fat replaced to have lost all function
 - MFI ≥ 10%; MFF ≤ 50%

2. Muscles do not appear to be affected by disease
 - MFF ≤ 10%

3. Muscles severely fat replaced and have likely lost most if not all function
 - MFF ≥ 50%

4. Excluded due to image artefacts

RICCI 3.0

5. Muscles clearly affected by disease, but not so severely fat replaced to have lost all function
 - MFI ≥ 10%; MFF ≤ 50%

6. Muscles do not appear to be affected by disease
 - MFF ≤ 10%

7. Muscles severely fat replaced and have likely lost most if not all function
 - MFF ≥ 50%

8. Excluded due to image artefacts

RICCI 4.0

9. Muscles clearly affected by disease, but not so severely fat replaced to have lost all function
 - MFI ≥ 10%; MFF ≤ 50%

10. Muscles do not appear to be affected by disease
 - MFF ≤ 10%

11. Muscles severely fat replaced and have likely lost most if not all function
 - MFF ≥ 50%

12. Excluded due to image artefacts
Quantitative Muscle Measurement is Consistent with FSHD Pattern

Circle and lines correspond to mean ± one standard deviation.
Good Reproducibility for All Muscle Measurements

- Good reproducibility across all muscles
- Higher reproducibility in larger muscles

Coefficient of variation

Within-subject standard deviation
Regional Composite Measurement (MFF_{tot} & MFI_{tot})

<table>
<thead>
<tr>
<th>Test</th>
<th>Muscles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Upper Extremity</td>
<td>Trunk</td>
</tr>
<tr>
<td>FHSD TUG</td>
<td>Supraspinatus, Infraspinatus, Subscapularis, Teres Minor, Deltoid, Biceps Brachii, Triceps Brachii</td>
</tr>
<tr>
<td>Classic TUG</td>
<td>N/A</td>
</tr>
<tr>
<td>RWS</td>
<td>N/A</td>
</tr>
</tbody>
</table>
Regional Composite Measurements (MFF_{tot} & MFI_{tot}) Show Strong Correlations with TUG, FSHD TUG and Moderate Correlations with RWS
Summary

- Developed WB-MSK- MRI protocol
 - Currently being performed in all Phase 2 clinical trials of losmapimod

- Reproducibility of quantitative muscle measurements was excellent

- Strong cross-sectional correlation between Regional Composite Measurement (MFF_{tot} & MFI_{tot}) and TUG, FSHD-TUG and RWS.

- Whole Body-MSK MRI can capture the heterogeneity and provide important information about disease severity as it correlates with FSHD relevant clinical endpoints.
Thank you!

- **ALL PATIENTS WITH FSHD**

- **Participating Sites**
 - Kennedy Krieger Institute
 - University of Rochester Medical Center
 - Radboudumc University Medical Center
 - The University of Kansas Medical Center
 - UCLA Health
 - University of Washington

- **Collaborators**
 - UC Irvine